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The Bilbao Crystallographic Server is a web site with crystallographic programs

and databases freely available on-line (http://www.cryst.ehu.es). The server gives

access to general information related to crystallographic symmetry groups

(generators, general and special positions, maximal subgroups, Brillouin zones

etc.). Apart from the simple tools for retrieving the stored data, there are

programs for the analysis of group–subgroup relations between space groups

(subgroups and supergroups, Wyckoff-position splitting schemes etc.). There are

also software packages studying specific problems of solid-state physics,

structural chemistry and crystallography. This article reports on the programs

treating representations of point and space groups. There are tools for the

construction of irreducible representations, for the study of the correlations

between representations of group–subgroup pairs of space groups and for the

decompositions of Kronecker products of representations.

1. Introduction

The Bilbao Crystallographic Server is a web site with crys-

tallographic databases and programs that can be used free of

charge from any web browser via the Internet. The server has

been on-line for more than 6 years and new programs are

continuously added to the available tools (Kroumova et al.,

2003). The server gives access to data in International Tables

for Crystallography (2002), Volume A: Space Group

Symmetry (abbreviated as ITA) and data of maximal

subgroups of plane and space groups as listed in International

Tables for Crystallography (2004), Volume A1: Symmetry

Relations between Space Groups (abbreviated as ITA1). We

have also started developing a database for subperiodic

groups: the basic crystallographic data of the layer and rod

groups [International Tables for Crystallography (2002),

Volume E: Subperiodic Groups (abbreviated as ITE)] and

their maximal subgroups are already accessible on the server.

The server includes the so-called k-vector or Brillouin-zone

database. It consists of Brillouin-zone figures and tables for all

230 space groups of the wavevector symmetry types, which are

fundamental for the classification of the space-group irre-

ducible representations (abbreviated as irreps). A database on

incommensurate structures, still under development, that

includes modulated structures and composites is also avail-

able.

The accompanying software is divided into several shells

according to its complexity and proximity to the information

contained in the database kernel. There are simple tools

for retrieving data directly from the database such as

generators and general positions, Wyckoff-position data and

maximal subgroups. In addition, we have developed different

applications that are essential for problems involving

group–subgroup relations between space groups: subgroups

and supergroups of space groups, graphs of maximal

subgroups for an arbitrary group–subgroup pair, Wyckoff-

position splitting schemes for group–subgroup pairs etc. In a

recent publication, we have provided a detailed description of

the set of databases available on the server and the shell

formed by the crystallographic computing programs (Aroyo et

al., 2006).

The aim of this contribution is to report on the development

of a shell with programs facilitating the application of repre-

sentation theory to specific problems of solid-state physics and

crystallography-related fields. The computing packages

support certain essential (and more involved from a mathe-

matical point of view) steps in the related group-theoretical

studies. The server offers access to the basic modules for

handling space-group (REPRES) and point-group (POINT)

representations, it enables the study of the correlations

between irreps of group–subgroup-related space groups

(CORREL) and the decomposition of Kronecker direct

products of space-group irreps (DIRPRO). In the following,

the group-theoretical background of the developed programs

is outlined. Illustrative examples explain the necessary input

data and provide details on the output results.



2. Representations of crystallographic groups

2.1. Space-group representations

2.1.1. The problem. There exist several reference sets of

tables of space-group irreps [see e.g. Cracknell et al. (1979),

hereafter referred to as CDML, and the references therein].

However, the available data have important drawbacks

related to the lack of full space-group representations owing

to the limitations and/or specificity in the choice of the k

vectors. In addition, the space-group settings used are often

not compatible with those of ITA. These disadvantages are

overcome by the program REPRES which computes the irreps

of space groups explicitly. For any space group G and a k

vector, the corresponding little group Gk, the allowed (little-

group) irreps and the matrices of the full-group irreps are

constructed. As part of the working environment of the Bilbao

Crystallographic Server, the program REPRES provides the

irrep data in a format suitable for its further use as input for

other programs on the server.

2.1.2. The method. REPRES calculates the irreps of space

groups following the algorithm applied in KAREP (Hove-

streydt et al., 1992). Both programs apply a general scheme

based on a normal-subgroup induction method of constructing

the irreps of a group G starting from those of a normal

subgroup H / G. The main steps of the procedure involve the

construction of all irreps ofH and their distribution into orbits

under G, determination of the corresponding little groups and

the allowed (small) irreps and, finally, construction of the

irreps of G by induction from the allowed irreps. The main

difference between the procedures applied in KAREP and

REPRES concerns the algorithm for the computation of the

composition series of the little group: the more general

procedure used in REPRES allows the calculations of irreps of

space groups defined with respect to any basis. (Only a

restricted number of unconventional settings of space groups

can be treated by KAREP.)

The application of the general normal-subgroup induction

procedure in the case of space groups is straightforward. A

normal subgroup of every space group is its translation group

T . The irreps of T are well known and their distribution into

orbits, the determination of the related little groups and the

induction of the space-group irreps follow closely the general

scheme. The most involved step in the procedure is the

determination of the allowed irreps of the little group. In the

majority of books on irreps of space groups, this problem is

solved by applying the theory of the so-called projective

representations. Here we have preferred another approach for

the construction of the allowed irreps, which is a slight

modification of an induction procedure originally proposed by

Zak (1960). It is based on the fact that all space groups are

solvable groups, i.e. for every space group one can construct a

composition series G .H1 .H2 . . . . . T such that all factor

groups Hi=Hiþ1 are cyclic groups of order 2 or 3.

In the following, we present the main steps of the REPRES

algorithm for the calculation of the matrices of the space-

group irreps. To make the exposition self-consistent, we have

included some basic space-group concepts and definitions as

given in ITA, Part 8, Introduction to Space-Group Symmetry.

For representation theory, we have followed the terminology

of CDML.

Step 1. Space-group information

The elements of a space group G are its symmetry opera-

tions which are isometries leaving an existing or a possible

crystal structure fixed (see ITA). Referred to a coordinate

system ðO; a1; a2; a3Þ, consisting of an origin O and a basis ak,

the symmetry operations of the space group G are described

by matrix–column pairs ðW ;wÞ.
The set of translations ti of G forms the translation group

T ðGÞ of G. For each translation, the corresponding vector is

defined and the translations of G are represented by pairs

ðI; tiÞ, where I is the 3� 3 unit matrix and ti is the column of

coefficients of the translation vector ti 2 L. The set of all

translation vectors of T ðGÞ is called the vector lattice L of G.

The group T ðGÞ is an infinite Abelian normal subgroup of G.

The cosets of the coset decomposition of the space group G

relative to T ðGÞ,

G ¼ T þ ðW 2;w2ÞT þ . . .þ ðW p;wpÞT ; ð1Þ

form the factor group G=T ðGÞ, which is isomorphic to the

point group PG of the space group G (often designated by G in

texts on representation theory of space groups).

For its calculations, REPRES needs a file containing the

generators of the space group. It is important to note that the

program expects the generators to build up the space group

from its translation subgroup in the form of a composition

series (see ITA, Part 8).

Step 2. Representations of the translation subgroup T of G

The irreps of a space group G are obtained by induction

from the irreps of T ðGÞ. If the Born–von Karman boundary

conditions ðI; toiÞ
Ni ¼ ðI; oÞ are assumed to hold [here Ni are

appropriate large integers and toi are the columns (1, 0, 0),

(0, 1, 0), (0, 0, 1) for i ¼ 1, 2, 3, respectively], then the irreps of

T ðGÞ are given by

�k
ðtÞ ¼ expð�ik � tÞ; ð2Þ

where t 2 T ðGÞ is the translation and tðt1; t2; t3Þ is the related

translation vector. There are N1N2N3 different irreps of T ðGÞ,

which are distinguished by their vector k:

k ¼
P3

i¼1

kia
�
i ; ð3Þ

where ki ¼ qi=Ni, qi ¼ 0; 1; 2; . . . ;Ni � 1. The basis a�1, a�2 , a�3
is called the basis of the reciprocal lattice L� and it is the dual

basis of a1, a2, a3 of L. Its vectors a�i are defined by the relations

ai � a
�
j ¼ 2��ij, where �ij is the Kronecker symbol.1

The set of all vectors k (known as wavevectors) forms a

discontinuous array. The wavevectors k and k0 ¼ kþ K,

where K 2 L�, describe the same irrep of T . Therefore, to

determine all irreps of T it is necessary to consider only the
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1 Crystallographers use for the basis of the reciprocal lattice a different
normalization ai � a

�
j ¼ �ij and obtain �kðtÞ ¼ expð�2�ik � tÞ instead of

equation (2).



wavevectors of a small region of the reciprocal space, the

so-called fundamental region. In most books and articles on

irreps of space groups, the first Brillouin zone (or simply

Brillouin zone) is chosen as a fundamental region. An alter-

native choice is the crystallographic unit cell in reciprocal

space that corresponds to the unit cell used in crystallography

for the description of crystal structures in direct space (cf.

Aroyo & Wondratschek, 1995, for more details).

Step 3. Orbits of irreps of T and little groups Gk

The little co-group of a wavevector k, Gk, is a subgroup of

the point group G. It consists of all matrices W k 2 G that leave

the vector k invariant or change it to an equivalent one, i.e.

k ¼ kW k þ K; K 2 L�: ð4Þ

The vector k is called a general k vector if Gk ¼ fIg; otherwise,

Gk > fIg and k is called a special k vector.

Consider the coset decomposition of G relative to Gk. If

fW mg is the corresponding set of coset representatives, then

the set �k ¼ fkW m þ Kg is called the star of k and the vectors

kW m þ K are called the arms of �k. (Here the lattice vector K

is necessary if kW m is outside the fundamental region.)

An orbit of Ck
ðT Þ relative to G comprises all irreps Ck0

ðT Þ

with k0 belonging to �k. From the classification of all k

vectors into stars follows the distribution of the irreps of T

into orbits relative to G. Irreps of T belonging to the same

orbit give rise to equivalent irreps of G, i.e. one needs one k

vector per star in order to obtain each irrep of G exactly once.

A simply connected part of the fundamental region that

contains exactly one k vector of each star of k is called a

representation domain. The crystallographic analog of the

representation domain in direct space is the asymmetric unit,

cf. ITA.

Given a space group G, its translation subgroup T and an

irrep Ck
ðT Þ, one can define the little group Gk of the wave-

vector k: it is a space group that consists of all those elements

of G whose rotation parts W k leave either k unchanged or

invert it into an equivalent vector,

G
k
¼ fðW k;wkÞ 2 GjW k 2 Gkg: ð5Þ

Step 4. Allowed irreps of Gk

The irreps of space groups are obtained by induction from

the so-called allowed irreps of the little groups Gk of k. If

Dk;iðG
k
Þ is an allowed irrep of Gk, then Dk;iðI; tÞ ¼ exp ð�iktÞI

holds. The matrix I is the identity matrix with

dimðIÞ ¼ dimðDk;iðG
k
ÞÞ.

As already noted, REPRES determines the allowed irreps

of the little group Gk making use of the composition series of

the little group Gk:

G
k .Hk

1 . . . . .Hk
m�1 .H

k
m . . . . .Hk

n ¼ T ðG
k
Þ ð6Þ

with jHk
m�1=H

k
mj ¼ 2 or 3. The (allowed) irreps of Gk can be

obtained from the (allowed) irreps of T ðGk
Þ by applying

several times the general induction procedure ‘climbing up’

the chain of normal subgroups. In this case, the induction is

simplified due to the special indices 2 and 3 that appear in the

composition series (6). The corresponding induction formulae

for the derivation of the irrep matrices of a group from those

of a normal subgroup are given in the following.

Consider a group A, a normal subgroup B of A and its

irreps DðBÞ. The set of matrices ðDðBÞÞa ¼

fDða�1baÞ; b 2 B; a 2 Ag is an irrep of B and is known as

conjugate to DðBÞ (with respect to A). It is either equivalent,

ðDðBÞÞa � DðBÞ, or non-equivalent to DðBÞ. The set of the

non-equivalent irreps ðDðBÞÞa for all a 2 A forms the orbit of

DðBÞ. The little group LðDðBÞÞ consists of all those elements a
of A for which ðDðBÞÞa � DðBÞ.

In the special cases of indices 2 and 3, the little group

LðDðBÞÞ of any irrep DðBÞ of B is either the group A or its

normal subgroup B. Two cases are to be distinguished:

(i) The orbit of DðBÞ has length 2 or 3, LðDðBÞÞ ¼ B.

(ii) The orbit of DðBÞ has length 1, i.e. LðDðBÞÞ ¼ A. The

irrep DðBÞ is called self-conjugate.

(a) The induction formulae for orbits of lengths 2 and 3.

For a normal subgroup of index 2 or 3, one can decompose

A into cosets relative to B, i.e. A ¼ B þ qB for index 2, and

A ¼ B þ qB þ q2B for index 3 with q 2 A but q =2B.

The orbits of irreps of B have the form:

index 2:

OðDðBÞÞ ¼ fDðBÞ; ðDðBÞÞqg

index 3:

OðDðBÞÞ ¼ fDðBÞ; ðDðBÞÞq; ðDðBÞÞq2g;

where ðDðBÞÞa are the non-equivalent conjugate irreps to

DðBÞ with respect to A.

The matrices of the irreps DIndðAÞ of A for a subgroup of

index 2 are given by

DIndðbÞ ¼
DðbÞ O

O ðDðbÞÞq

 !
;

DInd
ðqÞ ¼

O Dðq2Þ

I O

� �
:

ð7Þ

Similarly, for index 3:

DInd
ðbÞ ¼

DðbÞ O O

O ðDðbÞÞq O

O O ðDðbÞÞq2

0
B@

1
CA;

DInd
ðqÞ ¼

O O Dðq3Þ

I O O

O I O

0
B@

1
CA:

ð8Þ

Each orbit of irreps of B yields exactly one irrep of A.

(b) Orbits of length 1.

If the length of the orbit of an irrep of B is 1, then for the

little group LðDðBÞÞ ¼ A holds. Every such irrep of B gives

rise to jA=Bj irreps ofA with the same dimension as DðBÞ has.

The matrices of the irreps DmðAÞ, m ¼ 1, 2 or m ¼ 1, 2, 3, are

given as follows.
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For the case of index 2:

D1
ðbÞ ¼ D2

ðbÞ ¼ DðbÞ; b 2 B;

D1ðqÞ ¼ �D2ðqÞ ¼ U; ð9Þ

where U is determined by the conditions

Dðq�1bqÞ ¼ U�1DðbÞU; b 2 B;

U2
¼ Dðq2

Þ:

In the case of index 3:

Dm
ðbÞ ¼ DðbÞ; m ¼ 1; 2; 3;

D1
ðqÞ ¼ �D2

ðqÞ ¼ �2D3
ðqÞ ¼ U; ð10Þ

with � ¼ expð2�i=3Þ;

where U is determined by the conditions

Dðq�1bqÞ ¼ U�1DðbÞU; b 2 B and

U3
¼ Dðq3

Þ:

Step 5. Induction procedure for the construction of the irreps

The irreps of a space group G for a given k vector are

obtained from the allowed irreps Dk;i of the corresponding

little group G
k by induction. Let the elements

qm ¼ ðW m;wmÞ;m ¼ 1; . . . ; s, be the representatives of the

cosets of the decomposition of G relative to Gk. If

dimðDk;iÞ ¼ r and s is the order of the star of k, then the

induced irrep D�k;iðGÞ has the dimensions r� s and its

matrices can be written in the form

D�k;iðW ;wÞmp;nq ¼ MðW ;wÞm;nDk;i
ðW k;wk

Þp;q; ð11Þ

where ðW k;wkÞ ¼ ðqmÞ
�1
ðW ;wÞqn is an element of the little

group Gk. The s-dimensional matrix MðW ;wÞ is the so-called

induction matrix. It consists of zeros and ones only, having

exactly one ‘1’ in the mth row and nth column, determined by

the condition ðqmÞ
�1ðW ;wÞqn 2 G

k. Correspondingly, the

matrices D�k;iðW ;wÞ have block structure with exactly one

non-zero ðr� rÞ block in every column and every row, where

the block is the matrix Dk;iðW k;wkÞ and ðW k;wkÞ is fixed by

the above condition. Very often, for a better overview of the

irreps of G, their matrices are presented by the non-zero

blocks of the induction matrix and the corresponding

submatrices of the little-group irreps.

All irreps of the space group G for a given k vector are

obtained considering all allowed irreps Dk;m of the little group

G
k obtained in Step 4.

2.1.3. The program REPRES.

Input information

(a) Space group data. As input, the program needs the

specification of the space group G, which can be defined by its

sequential ITA number. Here, as well as in the rest of

programs related to space-group representations, the

following ITA conventional settings are chosen as default:

unique axis b setting for monoclinic groups, hexagonal axes

setting for rhombohedral groups, and origin choice 2 for the

centrosymmetric groups listed with respect to two origins in

ITA. The program REPRES can treat space groups in

unconventional settings, once the transformation matrix–

column pair ðP; pÞ to the corresponding conventional setting is

known. The 3� 3 square matrix P ¼ kPijk transforms the

conventional basis ða; b; cÞ of G to the non-conventional

ða0; b0; c0Þ one:

ða0; b0; c0Þ ¼ ða; b; cÞP: ð12Þ

The column p ¼ ðp1; p2; p3Þ of coordinates of the non-

conventional origin O0 is referred to the conventional coor-

dinate system of G.

(b) k-vector data. The program accepts k-vector coefficients

given with respect to different coordinate systems of the

reciprocal space. For its internal calculations, REPRES uses

k-vector coefficients ðk1; k2; k3Þ referred to a basis ða�; b�; c�Þ

which is dual to the conventional ITA settings of the space

groups, cf. Step 1 (called conventional k-vector coefficients).

The program accepts also k-vector coefficients referred to a

primitive basis ðp�1; p�2; p�3Þ of the reciprocal lattice as given, for

example, in CDML tables of space-group irreps. The relations

between the conventional and primitive k-vector coefficients

are given in Table 1. If a non-conventional setting for the space

group is chosen (12), then the corresponding ‘non-conven-

tional’ k-vector coefficients

ðk01; k02; k03Þ ¼ ðk1; k2; k3ÞP ð13Þ

can be given as input data. Note that the program does not

accept variables (free parameters) as coefficients of the

wavevector. The label of the k vector asked for by the program

is used only for designating the irreps of the little and space

groups.

The Brillouin-zones database with wavevector tables for all

230 space groups and figures of the Brillouin zones is available

on the Bilbao Crystallographic Server. In the compilation, the

symmetry properties of the wavevectors are described by the

so-called reciprocal-space groups which are isomorphic to

symmorphic space groups (Wintgen, 1941; see also Aroyo &

Wondratschek, 1995). The isomorphism allows the application

of crystallographic conventions in the classification of the

wavevectors (and henceforth in the irreps of the space

groups). For example, the different symmetry types of k

vectors correspond to the different kinds of point orbits

(Wyckoff positions) of the symmorphic space groups, the unit

cells with asymmetric units given in ITA can serve as Brillouin

zones and representation domains etc. The figures and the

wavevector data based on the reciprocal-space-group

symmetry are compared with the representation domains and
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Table 1
Conventional k-vector coefficients ðk1; k2; k3Þ in terms of primitive
(CDML) k-vector coefficients ðkp1; kp2; kp3Þ.

Lattice types k1 k2 k3

aP;mP; oP; tP; kp1 kp2 kp2

cP; hP; rP
mA; oA kp1 kp2 � kp3 kp2 þ kp3

mC; oC kp1 þ kp2 �kp1 þ kp2 kp3

oF; cF �kp1 þ kp2 þ kp3 kp1 � kp2 þ kp3 kp1 þ kp2 � kp3

oI; tI; cI kp2 þ kp3 kp1 þ kp3 kp1 þ kp2

hR (hexagonal) kp1 � kp2 kp2 � kp3 kp1 þ kp2 þ kp3



the k-vector tables of CDML. In the tables, the k-vector data

as listed by CDML are compared with the Wyckoff-position

description as given in ITA [the so-called adjusted coefficients,

cf. Aroyo & Wondratschek (1995)]. Each k-vector type is

specified by its label and parameters. The names of k-vector

points, lines and planes of CDML are retained in this listing.

New names have been given only to points and lines that are

not listed in CDML.

The figures of the Brillouin-zone database available on the

Bilbao Crystallographic Server are illustrated by the diagram

of the Brillouin zone for the space groups of the arithmetic

crystal class m3mF displayed in Fig. 1.

Output information

The output produced by REPRES contains the following

data.

1. Information on the space group G.

(a) Non-translational generators of G listed as matrix–

column pairs ðW ;wÞ, i.e. in (3� 4) matrix form. The sequence

of generators follows that of ITA for the conventional settings

of the space groups.

(b) List of translational coset representatives ðW ;wÞ of G,

equation (1), given in (3� 4) matrix form. The numbers

coincide with the sequential numbers of the general-position

coordinate triplets listed in ITA.

2. k-vector data. The program lists the input values of the

k-vector coefficients followed by the corresponding conven-

tional coefficients ðk1; k2; k3Þ. The coefficients of the arms of

the wavevector star �k are referred also to the basis that is

dual to the conventional (default) setting of the space group.

3. Information on the little group Gk, equation (5).

(a) A set of coset representatives of G with respect to the

little group Gk.

(b) A set of non-translational generators and a set of

translational coset representatives of Gk given as ð3� 4Þ

matrices.

(c) Little-group irreps presented in a matrix form for the

translational coset representatives of Gk in consecutive order.

4. Full-group representations. The program gives the full-

group irreducible representations of the non-translational

generators of the space group in a block-matrix form: for a

given representation and a generator, the program prints out

the induction matrix whose non-zero entries, specified by its

row and column indices, indicate a matrix block corresponding

to a little-group matrix, cf. equation (11).

URL of the program: http://www.cryst.ehu.es/rep/

repres.html.

Example: Irreps of P4bm for k ¼ Xð0; 1=2; 0Þ.

The input data consists in the specification of the space

group P4bm by its ITA number, No. 100, and the data for

k-vector coefficients, k ¼ Xð0; 1=2; 0Þ. [In all space groups

with primitive lattices, the k-vector coefficients ðkp1; kp2; kp3Þ,

referred to a primitive basis of the reciprocal space (CDML),

coincide with the conventional k-vector coefficients, cf.

Table 1.]

The discussion of the output follows the order of the results

as they appear in the output file. All space-group elements

ðW ;wÞ are given in a matrix–column form consisting of a

(3� 3) matrix part W and a (3� 1) column part w:

ðW ;wÞ ¼
W11 W12 W13 w1

W21 W22 W23 w2

W31 W32 W33 w3

0
@

1
A:

1. The space-group information block contains the following

data.

(a) The generators of P4bm (with the exception of the

generating translations) are listed in the same sequence as

they appear in ITA: ð1; oÞ, ð2z; oÞ, ð4z; oÞ, ðmx; �Þ, with

s ¼ ð1=2; 1=2; 0Þ:2

(b) Decomposition of P4bm relative to its translation

subgroup with coset representatives as given in ITA: ð1; oÞ,
(2z; oÞ, ð4z; oÞ, ð4

3
z; oÞ, ðmx; �Þ, (my; sÞ, ðmxx; �Þ, ðmxx; �Þ.

2. The k-vector information block gives the information on

the following.

(a) The input k-vector coefficients Xð0; 1=2; 0Þ followed by

the corresponding conventional coefficients.

(b) The k-vector star: �X ¼ fð0; 1=2; 0Þ; ð1=2; 0; 0Þg.
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Figure 1
Brillouin-zone diagram for the space groups Fm�33m, Fm�33c, Fd�33m and
Fd�33c. The asymmetric unit (AU) is the asymmetric tetrahedron
C;M;X;L; the representation domain (RD) is the more complicated
body with the vertices C;K;W;X;U and L. The special points are given
in red; the edges of the AU are brown if they are special lines, otherwise
they are pink; the red line LW is special but not an edge of the AU. Owing
to the special shape of the RD of CDML, a set of k vectors of the same
type (i.e. that give rise to the same type of irreps) is split into two parts:
the special lines R and S. In the AU description, R [ S corresponds to one
line ½CM�, with R1 � S.

2 To make the description more compact, we use a symbolic notation for the
space-group elements.



(c) The little group GX
¼ P2zba is specified by the coset

representatives of its decomposition with respect to the

translation subgroup: ð1; oÞ, ð2z; oÞ, ðmy; �Þ, ðmx; �Þ. The little

co-group GX ¼ f1; 2z;mx;myg is isomorphic to the point

group 2zmm.

(d) The coset representatives of the decomposition of P4bm

relative to P2zba: P4bm ¼ P2zbaþ ð4z; oÞP2zba.

3. Allowed irreps of GX (cf. Step 4 of the REPRES algor-

ithm).

As the little group GX is non-symmorphic and the k vector is

on the surface of the Brillouin zone, it is not possible to relate

directly the allowed irreps of P2zba with the linear irreps of

the little co-group 2mm. The program determines the allowed

irreps by constructing the composition series for the little

group P2zba:

P2zba . P2z . T :

The allowed irreps of P2zba are obtained in two steps.

(a) Construction of the allowed irreps of P2z starting from

those of the translational subgroup T :

P2z

��� ð1; oÞ ð2; oÞ ð1; tÞ

DX;1
P2z

��� 1 1 exp�ði�n2Þ

DX;2
P2z

��� 1 �1 exp�ði�n2Þ

Here, t is the column of coefficients ðn1; n2; n3Þ.

(b) From the conjugation of the elements of P2z under

ðmx; �Þ, it follows that the two allowed irreps of P2z form an

orbit of conjugate irreps, i.e. there is just one allowed two-

dimensional irrep of P2zba, equation (7).

P2zba
��� ð2; oÞ ðmx; �Þ ðmy; �Þ

DX;1

����� 1 0

0 �1

� �
0 �1

1 0

� �
0 1

1 0

� �
:

The program lists the corresponding irrep matrices following

the consecutive order of the translational coset representa-

tives of the little group. The (complex) matrix elements are

specified by their moduli and phase angles in degrees ½��. For

example, the matrix of the element ðmx; �Þ, listed under No. 4,

has the form:

ð0:000; 0:0Þ ð1:000; 180:0Þ
ð1:000; 0:0Þ ð0:000; 0:0Þ

� �
:

4. Full-group irreps (cf. Step 5 of the REPRES algorithm).

The matrices of the full-group irreps for the non-translation

generators are presented in a block-matrix form. The program

lists separately the induction matrix MðW ;wÞ and the corre-

sponding blocks of the little-group representation matrices

[equation (11)] specified by the row–column indices of the

non-zero entries of MðW ;wÞ. For example, the matrix of the

full-group irrep for the generator ð4z; oÞ of P4bm (No. 3 in the

list of generators),

D�X;1ð4z; oÞ ¼

0 0
�� 1 0

0 0
�� 0 �11

1 0
�� 0 0

0 1
�� 0 0

0
BB@

1
CCA;

is presented as a ð2� 2Þ induction matrix

M�X;1ð4z; oÞ ¼
0 1

1 0

� �
;

with the following ð2� 2Þ blocks:

Block (1,2) ¼
ð1:000; 0:0Þ ð0:000; 0:0Þ

ð0:000; 0:0Þ ð1:000; 180:0Þ

� �
;

Block (2,1) ¼
ð1:000; 0:0Þ ð0:000; 0:0Þ

ð0:000; 0:0Þ ð1:000; 0:0Þ

� �
:

2.2. Point-group representations (POINT)

2.2.1. The problem. The information about the 32 (non-

magnetic) crystallographic point groups plays a fundamental

role in many applications of crystallography. Examples of such

applications range from the external shape and physical

properties of macroscopic crystals to the local site symmetry in

crystal structures. In the literature, there exists a lot of infor-

mation about crystallographic point groups and their repre-

sentations. Some complete tables are given in Koster et al.

(1963), Bradley & Cracknell (1972), Altmann & Herzig (1994)

(and references therein). In our case, a selection of these data

has been recalculated and is now available online via the

Bilbao Crystallographic Server. The point-group databases

are part of the core shell of the server. They provide essential

information for a point-group analysis in applications related

to crystallographic, solid-state or phase-transition problems.

2.2.2. The method. The information about the irreps of the

32 point groups can be obtained from the program REPRES

for the particular case of �k ¼ C. All generated point-group

data have been stored as an XML database of the server. A

physical property can be represented by a tensor that trans-

forms, in general, according to a reducible representation. Any

reducible representation can be decomposed into irreducible

constituents applying the so-called reduction (‘magic’)

formula:

� �
M

i

ni�i; where ni ¼
1

jGj

X
g

�ðgÞ��i ðgÞ:

In the last expression, � represents a reducible representation

expressed in terms of its irreps �i. The multiplicity of the irrep

is given by ni, jGj is the order of the point group, i.e. the

number of symmetry operations of the point group, and �ðgÞ
and �iðgÞ are the corresponding characters of the reducible

representation � and the irrep �i.

2.2.3. The program POINT. The program POINT displays a

set of several tables for each of the 32 crystallographic point

groups that are specified by their international (Hermann–

Mauguin) and Schoenflies symbols.
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1. Character table. The character table provides the char-

acters of the ordinary (vector) irreps of a chosen point group.

The irreps are labeled in the notation of Mulliken (1933) and

by the � labels given by Koster et al. (1963). The matrices of

the degenerate irreps as calculated by REPRES are also

accessible. The number of point-group elements in a conju-

gacy class is indicated by the listed multiplicity. In addition, the

transformation properties of the Cartesian tensors of ranks 1

(vectors and axial vectors) and 2 are displayed. (The tensor of

rank 0 always belongs to the totally symmetric irrep and is not

listed explicitly). Cartesian tensors that span two- or three-

dimensional irreps are joined by brackets.

2. Subgroup table. The point-group types of the subgroups

of a point group are listed with the corresponding indices in

the initial point group.

3. Irrep multiplication table. The table shows the decom-

position into irreducible constituents of the Kronecker

(direct) product of any pair of point-group irreps.

4. Tensor representations. The table lists the decompositions

into irreducible constituents of representations related to

some important tensors (and their powers), such as the vector

V (polar) or the pseudovector A (axial), their symmetrized

½V2� or antisymmetrized squares etc.

5. Selection rules for fundamental transitions. The table

displays the selection rules for infrared and Raman electronic

transitions. The data in the first row of each table (specified by

the trivial irrep label) correspond to the usual infrared and

Raman selection rules.

6. Subduction from the rotation group irreps. Given a

(vector) representation of the rotation group of dimension

2l þ 1, l ¼ 0; . . . ; 9, the table lists the point-group irreps that

appear in its subduction to the chosen point group.

URL of the program: http://www.cryst.ehu.es/rep/

point.html.

3. Correlations between the representations of group–
subgroup-related space groups

3.1. The problem

For different physical applications, it is important to know

the compatibility relations (known also as correlations)

between the representations of group–subgroup-related crys-

tallographic groupsH<G. For their calculation, it is sufficient

to consider the irreps of G. The problem can be formulated as

follows: given an irrep DG of G, how does the subduced

representation Ds
G ¼ DG # H decompose into irreps of DH of

H? This subduced representation Ds
G is in general a reducible

one and can be transformed into a direct sum of irreps DH of

H by a suitable unitary transformation S:

Ds
GS ¼ S½	Eðs j iÞ 
Di

H�; ð14Þ

where Eðs j iÞ is the unit matrix of dimension ðs j iÞ and ðs j iÞ is

the number of times the irrep Di
H is contained in the Ds

G (the

so-called subduction coefficients). The matrix S is known as the

subduction matrix.

Subduction coefficients and subduction matrices occur in

various physical problems. For example, in crystal-field theory

the subduction coefficients indicate how the energy level of a

free atom splits under the influence of the crystal field while

the corresponding subduction matrices are used to transform

the wavefunctions of the free atom to a symmetry-adapted

basis which simplifies the eigenvalue problem of the full

Hamiltonian. The subduction coefficients and subduction

matrices are also necessary for the investigation of phase

transitions in solid-state materials, energy-band calculations,

morphic effects in Raman and infrared spectra (see e.g.

Birman, 1974) etc.

The problem of subduction coefficients and subduction

matrices for crystallographic point groups is completely

solved. For example, data on subduction coefficients for the

irreps of point groups have been tabulated long ago (Koster et

al., 1963). However, similar results on subduction quantities

for crystallographic space groups are only partially known.

The difficulties in their tabulation are related to the great

number and variety of space-group representations and

possible group–subgroup relations between space groups.

The software package CORREL computes the correlations

between representations of a crystallographic space group G

and those of its subgroups H, including the multiplicities of

Di
H in DG # H. In addition, the program determines the

corresponding subduction matrices S, which relate the bases of

the irreducible constituents Di
H to those of the subduced

representation DG # H, equation (14).

3.2. The method

The space-group formulation of the subduction problem is

straightforward. The subduced representation D�kG;i # H is in

general a reducible one and can be transformed into a direct

sum of irreps D�kH;j of H by a suitable transformation S:

ðD�kG;i # HÞS ¼ S½	Eð�kG; i j �kH; jÞ 
D�kH;j�: ð15Þ

The direct sum is over all stars �kH ofH and over all allowable

irreps D�kH;j that may arise for a given �kH. The subduction

coefficients ð�kG; i j �kH; jÞ are integers and denote the

multiplicity of irreps D�kH;j in the subduced representation.

The rows of the subduction matrix S are labeled by the row

indices of D�kG;i. The columns of the subduction matrix are

specified by a triple of indices indicating the irrep D�kH;j, its

multiplicity and a row index. The coefficients of a given

column of S determine the linear combination of the basis

functions of D�kG;i that transforms as the corresponding row of

D�kH;j.

We are interested in the calculation of the subduction

coefficients and the subduction matrix S.

In order to determine the subduction coefficients

ð�kG; i j �kH; jÞ, one can proceed by rewriting the defining

equation (15) using the character systems ��kG;i of D�kG;i and

��kH;j of D�kH;j:

��kG;iðhÞ ¼
P
ð�kG; i j �kH; jÞ��kH;jðhÞ; h 2 H: ð16Þ
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The application of the orthogonality properties of the char-

acters of the irreps D�kH;j to equation (16) results in an

expression for the subduction coefficients that is difficult to

use directly: it would involve a sum over all elements of the

subgroup. An alternative to the conventional routine for

determination of ð�kG; i j �kH; jÞ follows directly from their

definition. Although the sum in equation (15) is over all stars

�kH, in fact only representations from a small number of stars

are contained in the subduced representation. The determi-

nation of the splitting of the star �kG of G into stars �kH ofH is

the first step in the procedure for the determination of the

subduction coefficients. Owing to the decomposability of the

subduced representations into irreducible constituents (15),

the star �kG is decomposed into entire stars �kH. One can

formally introduce �k subduction coefficients ð�kG j �kHÞ to

describe the splitting of the star �kG:

�kG ¼
P
�kH

ð�kG j �kHÞ�kH; ð17Þ

where the sum is over the stars �kH that occur in �kG. The

coefficients ð�kG j �kHÞ are integers and they relate in an

obvious way the number of arms skG
and skH

of the stars �kG
and �kH:

skG
¼
P
ð�kG j �kHÞskH

: ð18Þ

The �k subduction coefficients are determined by direct

inspection: starting from an arbitrary arm of �kG, one deter-

mines all those arms kG that belong to the corresponding star

�kH. If any vectors kG are left, one continues with the

procedure until all �kG arms are distributed into �kH stars.

The determination of the �k subduction coefficients reduces

the sum in equation (16) and in this way simplifies the calcu-

lation of the subduction coefficients. Consider a star �kH with

ð�kG j �kHÞ 6¼ 0 whose nkH
irreps are of dimensions d�kH;j =

dimðD�kH;jÞ. A set of linear algebraic equations with the

subduction coefficients as unknowns is obtained taking

equations (16) for different elements of H. Their number

equals
P

nkH
, where the sum is over the number of distinct

�kH stars that occur in �kG. The subduction coefficients for

given �kH are further restricted by the following relation:P
j

ð�kG; i j �kH; jÞd�kH;j ¼ rkG
ð�kG j �kHÞskH

: ð19Þ

Here rkG
is the dimension of the little-group irrep DkG;i and the

sum is over all irreps D�kH;j of �kH. This condition becomes

obvious if one notes that the two sides of the equation express

the total dimension of the irreps of �kH that occur as irre-

ducible constituents in the decomposition of the subduced

representation.

Once the subduction coefficients are determined, it is

possible to construct the block-diagonal representation

	Eð�kG; i j �kH; jÞ 
D�kH;j, equivalent to the subduced

representation ðD�kG;i # HÞ. The set of matrix equations (15)

for the elements of H forms a system of linear equations with

the elements of the subduction matrix S as unknowns. For the

explicit calculation of the elements of the subduction matrix it

is convenient to split and rewrite equation (15) for each D�kH;j

separately:

ðD�kG;i # HÞS�kH;j ¼ S�kH;jD�kH;j: ð20Þ

Here the rectangular matrices S�kH;j consist of d�kH;j columns

of S and correspond to the elements of the subduction matrix

associated with the irrep D�kH;j. The number of independent

solutions of (20) equals the multiplicity of D�kH;j in the

subduced representation. One should note that: (i) we are

interested only in the nonsingular solutions for the subduction

matrix, and (ii) the freedom in the determination of S follows

from the Schur lemma for reducible representations: the

subduction matrix S is determined up to a matrix belonging

to the commuting algebra of the representation

	Eð�kG; i j �kH; jÞ 
D�kH;j.

3.3. The program CORREL

As input data, the program requires the groups G and H

specified by their ITA numbers, and a transformation matrix–

column pair ðP; pÞ relating the conventional (default) bases of

the group and the subgroup, equation (12). The k-vector

coefficients could be referred to the primitive bases of recip-

rocal space (of the supergroup) as found in CDML. Another

possibility for the cases of centered lattices is to refer the k

vector to the centered dual basis or to specify it by the

adjusted coefficients (cf. x2.1.3).

First, the �k subduction coefficients ð�kG j �kHÞ and the

corresponding subduction coefficients ð�kG; i j �kH; jÞ are

computed. Although the procedure for the determination of

�k subduction coefficients is straightforward, it is worth

pointing out that attention should be paid in the cases when

the reciprocal lattices of the group and the subgroup are

different (e.g. when H is a klassengleiche subgroup of G). The

splitting of the star �kG into the stars of the subgroup �kH is

carried out with respect to the subgroup bases. Next, the

subduction coefficients are computed by solving the system of

linear equations (16). The irreps of G and H and their char-

acters necessary for the construction of the system (16) are

calculated by REPRES. Trying with different elements of H,

the program searches for
P

nkH
(the sum is over all �kH stars

obtained from the splitting of �kG) linear independent equa-

tions of the type (16). A procedure GAUSS based on the

Gauss elimination method solves the system of linear equa-

tions and determines the subduction coefficients

ð�kG; i j �kH; jÞ.

For the calculation of the subduction matrices, the program

constructs the matrices of the direct-sum representation [cf.

the right-hand side of equation (20)] using the calculated

subduction coefficients and the corresponding matrices of

irreps calculated by REPRES. The elements of the subduction

matrix S are obtained as solutions of the system of linear

equations (20). A modification of the Gauss elimination

procedure that takes into account the sparse character of the

involved matrices is applied for the purpose.

The output consists of five main subblocks. The listed data

start with information on the studied group–subgroup pair of
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space groups G>H including their space-group numbers and

lattice types, lists of generators and translational coset repre-

sentatives ðW ;wÞ given in ð3� 4Þ matrix form, and the

transformation matrix–column pair ðP; pÞ. The �kG vector is

specified by its input coefficients and those referred to the dual

basis of the default setting of G, followed by a list of the arms

of �kG.

Under the heading ‘INFORMATION FOR THE SPLIT-

TING’ follows a block containing information on the splitting

of the star �kG into wavevector stars �kH of the subgroup, cf.

equation (17).

Next follow two blocks of the same type for the group

and the subgroup (with the headings ‘INFORMATION FOR

THE SUPERGROUP’ and ‘INFORMATION FOR THE

SUBGROUP’), containing information on the relevant little

groups, the allowed little-group irreps, the chosen coset

representatives of the decomposition of the group with respect

to the little group and the full space-group irreps (optional).

The last block of the output, entitled ‘SUBDUCTION

PROBLEM’, contains the subduction coefficients and the

corresponding subduction matrices for each irrep of the

supergroup for the considered �kG vector.

URL of the program: http://www.cryst.ehu.es/rep/

correl.html.

Example. The program CORREL is illustrated by the

calculation of the subduction coefficients and matrices for the

irrep D�X;1 of P4bm [k ¼ Xð0; 1=2; 0Þ] in its subduction to the

subgroup P2 of index 8.

The input data includes the following.

1. The specification of the group–subgroup pair by the

corresponding ITA numbers of the involved space groups and

the transformation matrix ðP; pÞ which relates the conven-

tional bases of G and H. The transformation matrices for a

given group–subgroup pair and their index can be obtained

from the program SUBGROUPGRAPH available on the

Bilbao Crystallographic Server. There are seven subgroups P2

(No. 3) of P4bm (No. 100) of index 8 distributed into four

different classes of conjugate subgroups. Here, we consider the

symmetry break P4bm>P2 with

ðP; pÞ ¼
0 0 1

�� 0

2 0 0
�� 1

2

0 1 0
�� 0

0
@

1
A:

2. The wavevector X is specified by its primitive coefficients

ð0; 1
2 ; 0Þ.

In the first block of the output file, the program lists the

generators, general positions of P4bm and P2 as ð3� 4Þ

matrix–column pairs. The transformation matrix ðP; pÞ is

printed in the same form. The coefficients of its translation

part are printed as multiples of 1
24 (e.g. 1

2 is listed as 12). The two

arms of �X are given by their conventional coefficients

�X ¼ fð0; 1
2 ; 0Þ; ð12 ; 0; 0Þg.

The splitting of the �X in the subgroup wavevector stars �S1

and �S2, equation (17), is indicated in the next block:

�X ¼ 1 �S1	 1 �S2;

where each �kH is preceded by its multiplicity in �kG. In our

case, ð�X j �S1Þ ¼ ð�X j �S2Þ ¼ 1. The star �S1 ¼ ð1; 0; 0Þ is

equivalent to the C wave vector of P2. The star �S2 ¼ ð0; 0; 1
2Þ

is also a special one and corresponds to the point Z in CDML

notation (cf. the Brillouin-zone database available on the

server).

The next block includes the data on the little group and

(optionally) the full-group irreps of P4bm for the X wave-

vector. The little- and full-group irreps of �S1 and �S2 of the

subgroup P2, relevant for the subduction, are given in the

block ‘Information about the subgroup’. The presentation of

the data follows the form and the sequence already discussed

and illustrated in x2.1.3. There is one four-dimensional full

group irrep ð�XÞð1Þ (cf. the example of the program

REPRES). For each subgroup star �S1 and �S2 there exist two

irreps labeled as ð�SiÞð jÞ, i; j ¼ 1; 2, i.e. there are altogether

four one-dimensional irreps of P2 that can take part in the

decomposition of ð�XÞð1Þ [cf. equation (15)]. The irrep

ð�S1Þð1Þ corresponds to the identity irrep of P2.

The last block of the output file includes the subduction

coefficients ð�kG; i j �kH; jÞ and the subduction matrices S. The

subduced irrep ð�XÞð1Þ # P2 splits into the four irreps of the

subgroup, each appearing with multiplicity 1:

ð�XÞð1Þ # P2

� ð�S1Þð1Þ 	 ð�S1Þð2Þ 	 ð�S2Þð1Þ 	 ð�S2Þð2Þ: ð21Þ

The subduction matrix S is shown in two parts: a matrix with

numerical values gives one possible (non-zero) solution for

the subduction matrix. The irrep indices of its columns follow

the order of the irreps in the direct-sum decomposition of

D�kG;i # H [equation (21)]. The block-diagonal (unitary)

matrix with complex parameters expressed by letters is related

to the uniqueness of S. The freedom in the determination of

the rectangular matrices S�kH;j (20) is given by the corre-

sponding subblocks. Their dimensions equal the multiplicities

of D�kH;j in D�kG;i # H. In our example, all irreps of the

subgroup in equation (21) are of dimension 1 and the corre-

sponding rectangular matrices are reduced to single columns.

The freedom in their determination is given by single complex

numbers (or phase factors if the normalization condition is

imposed) as the multiplicities of the irreps ð�SiÞð jÞ in ð�XÞð1Þ

equal 1.

4. Direct product of representations

4.1. The problem

There are a number of physical applications of the repre-

sentation theory of space groups that are based on the analysis

of the Kronecker product of space-group representations. A

well known example is related to the determination of selec-

tion rules for various physical processes in crystalline ma-

terials as infrared absorption, Raman scattering, neutron

scattering, electron scattering etc. [see e.g. Birman & Berenson

(1974) and Cracknell (1974)]. The essential step of the selec-

tion-rules derivations consists in the reduction of Kronecker

products of space-group representations into irreducible
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constituents. Consider the irreps D�k;m and D�k
0;m0 of the space

group G spanned by the sets of basis functions

f�k1;m
1 ; . . . ; �ks;m

rm
g and f�

k0
1
;m0

1 ; . . . ; �
k0

s0
;m0

r0m0
g. The set of all bilin-

ears f�k1;m
1 �

k0
1
;m0

1 ; . . . ; �ks;m
rm
�

k0
s0
;m0

r0
m0
g form a carrier space of the

so-called Kronecker (direct or tensor) product representation

D�k;m 
D�k
0;m0 of G. It is in general a reducible representation

with dimðD�k;m 
D�k
0;m0 Þ ¼ ðs� rmÞðs

0 � r0m0 Þ.
3 In order to

decompose the direct-product representation into irreducible

constituents, one first determines the so-called reduction

coefficients of the Clebsch–Gordan series ð�km; �k0m0j�k00m00Þ
(in the following referred to as reduction coefficients for

short). The reduction coefficients are integers that indicate the

irreps D�k
00;m00 that appear in the decomposition of the

Kronecker product:

D�k;m 
D�k
0;m0

� 	�k00;m00 ½Eð�km; �k0m0j�k00m00Þ 
D�k
00;m00 �: ð22Þ

In order to complete the decomposition, one further deter-

mines the Clebsch–Gordan coefficients. They define the

correct linear combination of bilinear products ð�k�;m
� �

k0
�0
;m0

�0 Þ

which transform according to the irreps D�k
00;m00. The Clebsch–

Gordan coefficients can be suitably assembled into a matrix C

that transforms the direct product (22) into a fully reduced

form:

ðD�k;m 
D�k
0;m0
ÞC ¼ C½	Eð�km; �k0m0j�k00m00Þ 
D�k

00;m00
�:

ð23Þ

Here the direct sum is over all stars �k00 and over all allowable

irreps D�k
00;m00 which may arise for a given �k00. The identity

matrix EðlÞ is of dimension l.

Apart from the ordinary Kronecker products, the reduc-

tions of symmetrized (Kronecker) squares and cubes of irreps

are also of considerable interest especially in applications

related to the Landau theory of second-order or continuous

phase transitions in crystalline solids. The theory sets neces-

sary conditions for a continuous transition which involves

evaluation of the symmetrized cubes and antisymmetrized

squares of certain space-group representations [see e.g.

Cracknell (1974) for details and references]. The Kronecker

powers of representations are defined in exactly the same way

as ordinary products. The Kronecker square of an irrep D�k;m

is a reducible representation of dimension ðs� rmÞ
2. In the

following, we consider the decomposition of the symmetrized

Kronecker square of an irrep:

½D�k;m�ð2Þ � 	�k00;m00E½ð½�k;m�ð2Þj�k
00;m00Þ 
D�k

00;m00
�: ð24Þ

If the dimension of D�k;m is d, then the dimension of its

symmetrized square is 1
2 dðdþ 1Þ.

The theory of the decomposition of Kronecker products

and the related reduction coefficients has been developed

during the second half of the last century. Details on the

different approaches and references to the numerous contri-

butions to that field can be found e.g. in Bradley & Cracknell

(1972) or CDML. Applying the so-called full-group method,4

Birman (1962) published the first extensive reductions for the

space groups of the diamond and zinc-blende structures. The

full-group method was the only one available until the work by

Bradley & Davies (1970) who developed the basis of the

subgroup methods for the reduction problem.

The work involved in the construction of Kronecker

products tables for space groups is rather tedious and requires

considerable expertise in some aspects of the representation

theory of space groups. Probably this is the reason that the

only systematic and relatively complete compilations of

Kronecker product tables for the space groups are given in

Volumes 2, 3 and 4 of the Kronecker Product Tables (Davies &

Cracknell, 1979; Cracknell & Davies, 1979; Davies & Crack-

nell, 1980). The reductions of ordinary Kronecker products of

the irreps of the special wavevectors in the representation

domains of all 230 space groups are given in Volumes 2 and 3

of the series. In Volume 4, the reductions of the symmetrized

squares and cubes of the special wavevectors are listed. The

tables are computer produced and the method for their

calculation is based on the subgroup method. However, the

Kronecker Product Tables have become a bibliographic

collector’s item. In addition, for certain applications, the

published data are not sufficient and/or it is necessary to have

the data in an electronic form. The program DIRPRO carries

out the reductions of ordinary Kronecker products and

symmetrized squares of space-group irreps for any wavevector

(inside or outside the representation domain). The program

calculates the related wavevector selection rules (see below)

and the reduction coefficients. The program DIRPRO is

designed to compute also the Clebsch–Gordan coefficients.

For the moment, this option is not included in the imple-

mented version of DIRPRO on the Bilbao Crystallographic

Server.

4.2. The method

For the decomposition of the Kronecker product of two

space-group irreps and the determination of the corre-

sponding reduction coefficients, we use a modification of the

full-group method [cf. Birman (1974) for details and a math-

ematical background of the approach]. The reduction proce-

dure applied in DIRPRO is rather similar to the one used for

the solution of the subduction problem (x3). The reason is

obvious: in both cases, it is necessary to decompose a reducible

representation into irreducible constituents. The essential

differences concern the construction of the reducible repre-

sentation.

The determination of the reduction coefficients of an

ordinary Kronecker product (22) and of a symmetrized

Kronecker square (24) of space-group irreps is carried out in

two steps.
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3 Here sðs0Þ give the number of arms of �kð�k0Þ, rmðr
0
m0 Þ stand for the

dimension of the little-group irreps Dk;mðDk0;m0 Þ. The products ðs� rmÞ and
ðs0 � r0m0 Þ equal the dimensions of the full-group irreps d�k;m ¼ dimðD�k;mÞ and
d�k

0;m0 ¼ dimðD�k
0;m0 Þ.

4 The full-group methods deal with the full space group G and its irreps D�k;m

and uses these in all stages of the reduction procedure. In contrast, the
subgroup methods focus mainly on the little groups Gk and its allowable irreps
Dk;m. Since D�k;m are constructed by induction from Dk;m, it is possible to
obtain an equivalent set of results of the Kronecker product reduction.



4.2.1. Wavevector selection rules. The first step in the

reduction procedure is the determination of the wavevector

stars �k00 that occur in the splitting of the direct product

�k
 �k0. One defines �k reduction coefficients ð�k�k0 j �k00Þ

for the formal description of the splitting:

�k
 �k0 ¼
P
�k00
ð�k�k0 j �k00Þ�k00: ð25Þ

The fact that the sks0k0 arms of the direct product �k
 �k0 must

be expressible in terms of entire stars results in the following

relation for ð�k�k0 j �k00Þ:

sks0k0 ¼
P
�k00
ð�k�k0 j �k00Þs00k00 : ð26Þ

The analogous relations for the �k reduction coefficients for

the symmetrized Kronecker product ð½�k�ð2Þ j �k
00Þ are of the

form

½�k�ð2Þ ¼
P
�k00
ð½�k�ð2Þ j �k

00Þ�k00; ð27Þ

1
2 skðsk þ 1Þ ¼

P
�k00
ð½�k�ð2Þ j �k

00Þs00k00 : ð28Þ

The �k reduction coefficients are integers and are determined

by direct inspection.

4.2.2. Reduction coefficients. The number N of unknown

reduction coefficients equals the sum over the numbers of

allowed irreps for each of the stars �k00 that appear in the

splitting of the Kronecker product. The method of linear

equations is used for the determination of the reduction

coefficients. The first q equations follow from the dimension-

ality conservation conditions for each of the resultant wave-

vector stars �k00i , i ¼ 1; . . . ; q:P
m00
ð�km; �k0m0 j �k00m00Þd�k

00;m00

¼ rkmr0k0m0 ð�k�k
0 j �k00Þs00k00 : ð29Þ

Here d�k
00;m00 is the dimension of D�k

00;m00, and rkm and r0k0m0 are

the dimensions of the little-group irreps of the factors D�k;m

and D�k
0;m0 .

The rest of the equations for the reduction coefficients are

obtained from the defining relation (22) rewritten for the

characters of D�k;m 
D�k
0;m0 and the resultant irreps:

�ð�k;mÞ
ð�k
0;m0ÞðgÞ ¼

P
ð�km; �k0m0j�k00m00Þ��k

00;m00 ðgÞ;

where �ð�k;mÞ
ð�k
0;m0ÞðgÞ ¼ ��k;mðgÞ��k

0;m0 ðgÞ; g 2 G: ð30Þ

Similarly, for the case of symmetrized Kronecker products,

one gets the following equations:P
m00
ð½�km�ð2Þj�k

00m00Þd�k
00;m00

¼ 1
2 rkmðrkm þ 1Þð½�kð2Þ� j �k

00Þs00k00 ; ð31Þ

�½�k;m�ð2Þ ðgÞ ¼
P
ð½�km�ð2Þj�k

00m00Þ��k
00;m00 ðgÞ;

with �½�k;m�ð2Þ ðgÞ ¼ 1
2 ½ð�

�k;mðgÞÞ2 þ ð��k;mðgÞ2Þ�; g 2 G: ð32Þ

Trial-and-error methods are used for the selection of the

necessary ðN � qÞ independent linear equations for the

calculation of the reduction coefficients. The search is carried

out among equations of the type (30) or (32) taken for

different elements of G. A Gauss elimination procedure is used

for the solution of the system of linear equations for the

reduction coefficients.

4.3. The program DIRPRO

The input data of DIRPRO include the specification of the

space group G by its ITA number and the data for the

wavevectors. The k-vector coefficients could be referred to the

primitive bases of reciprocal space (as found in CDML), to the

centered dual basis or to specify the wavevector by the

adjusted coefficients (cf. x2.1.3). As an option, the program

displays the full-group representations (not just the repre-

sentations of the little groups) for the generators of the space

group. There is also an option to consider the symmetrized

Kronecker squares if �k ¼ �k0.

The structure of the output of DIRPRO follows that of

CORREL. The first block lists the information about the space

group G including its space-group number and lattice type,

generators and translational coset representatives ðW ;wÞ
given in ð3� 4Þ matrix form. The k vectors are specified by

their input coefficients and those referred to the dual basis of

the default setting of G. The arms of the wavevector stars �k

and �k0 are also shown. The wavevector selection rules are

displayed in the block with the heading ‘INFORMATION

FOR THE SPLITTING’. Each of the resulting �k00 stars is

specified by its k-vector coefficients referred to the dual basis

of G. Next follows the block containing information on the

representations of the space group G for �k, �k0 and all �k00

stars that appear in the splitting of the direct product. The data

consist of the corresponding little groups, the allowed little-

group irreps, the chosen coset representatives of the decom-

position of the group with respect to the little group and the

full space-group irreps given for the generators (optional).

The last block of the output, called ‘REDUCTION

PROBLEM’, shows the decompositions of all possible direct

products D�k;m 
D�k
0;m0 (for each allowed m and m0) into

direct sums of irreducible constituents. The reduction coeffi-

cients of the symmetrized squares are displayed optionally.

URL of the program: http://www.cryst.ehu.es/rep/

dirpro.html.

5. Illustrative examples

The databases and computer packages on space- and point-

group representations form the set of basic modules that is

used further in different programs on the Bilbao Crystal-

lographic Server for applications of representation theory to

specific problems of solid-state physics and chemistry. For

example, symmetry-mode analysis of atomic displacements of

crystalline solids could be very helpful for the proper inter-

pretation of infrared and Raman experimental results. The

program SAM computes the symmetry-adapted modes at the

C point and studies their infrared and Raman activity. The

program NEUTRON (Kirov et al., 2003) computes the phonon

selection rules applicable in inelastic neutron-scattering

experiments. The software package SYMMODES (Capillas et
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al., 2003) performs a group-theoretical analysis of structural

phase transitions. These application programs are a subject of

a forthcoming article. In the following, we illustrate the

usefulness of the group–subgroup computer tools available on

the Bilbao Crystallographic Server [program SUBGROUP-

GRAPH, for more details see e.g. Aroyo et al. (2006)] and the

correlation relations obtained by CORREL in treating phase-

transition problems.

Consider a continuous or quasi-continuous phase transition

between two crystalline phases whose symmetry groups are

group–subgroup related G>H. The order parameter that

drives the transition (i.e. it is related to the symmetry-breaking

distortion with respect to the high-symmetry phase) is known

as the primary order parameter and is associated with an irrep

D�k;m of G, the so-called active irrep. The direction of the order

parameter below the transition determines the space-group

symmetry H which is also known as the isotropy subgroup of

the order parameter. A subgroupH is an isotropy subgroup of

D�k;m of G if and only if: (i) the subduction multiplicity of the

identity irrep of H in D�k;m # H is non-zero, and (ii) there

exists no supergroup Z of H in the group–subgroup graph of

maximal subgroups of G>H with the same subduction

multiplicity of the identity irrep of Z in D�k;m # Z. These

conditions are known as subduction and chain-subduction

criteria (see e.g. Birman, 1978). In the analysis of the

symmetry break G ! H, one should consider all possible

distortions compatible with the symmetryH. Some distortions

are related to order parameters associated with irreps

different from that of the primary order parameter and are

known as secondary order parameters. Their isotropy

subgroups are in general supergroups of the space group of

the low-symmetry phase in the group–subgroup graph G>H.

The symmetry analysis of the primary and secondary order

parameters of a transformation between a high- and a low-

symmetry phase of given space-group symmetries is known

as the inverse Landau problem (Ascher & Kobayashi, 1977).

The following two ‘classical’ examples demonstrate how the

results of the programs SUBGROUPGRAPH and CORREL

can be applied for the solution of the inverse Landau

problem.

Example 1

The crystal structure of BaTiO3 is of perovskite type. Above

493 K, BaTiO3 has the ideal paraelectric cubic phase (Pm�33m,

No. 221). As the temperature is lowered, BaTiO3 assumes

tetragonal, then orthorhombic and finally trigonal structures

with slightly deformed unit cells. The three structures are

ferroelectric with different directions of the spontaneous

polarization axes. The possible transformation matrices for the

symmetry break Pm�33m>P4mm of index 6 are listed by the

program SUBGROUPGRAPH. The three different P4mm

subgroups of Pm�33m corresponding to the three domain

orientations of the tetragonal phase are conjugated in Pm�33m.

Here, we consider the case of the identity transformation

matrix between the conventional bases of Pm�33m and P4mm.

The low-symmetry space group P4mm is a translationengleiche

subgroup (or t subgroup for short) of Pm�33m but it is not a

maximal subgroup: the chain of maximal subgroups is of the

form Pm�33m>P4=mmm>P4mm. The correlation relations

calculated by CORREL for Pm�33m>P4mm with k vector C =

(0, 0, 0) indicate the candidates for the irreps of Pm�33m asso-

ciated with the possible primary and secondary order par-

ameters. The subduction multiplicity of the identity irrep of

P4mm is equal to 1 for three different irreps of Pm�33m:

ð�GMÞð1Þ (which is the identity irrep), ð�GMÞð6Þ and

ð�GMÞð9Þ (here we use the irrep notation of CORREL). The

application of the chain-subduction criteria distinguishes

between primary and secondary order parameters. The

obvious isotropy group of ð�GMÞð1Þ is the high-symmetry

group itself and the irrep ð�GMÞð1Þ is related to the possible

volume change that would occur during the transformation.

The run of CORREL for the pair Pm�33m>P4=mmm shows

that the group P4=mmm is the isotropy subgroup for

ð�GMÞð6Þ and the associated secondary order parameter

corresponds to the onset of tetragonal strain during the

transformation. Finally, the physical distortion characterized

by ð�GMÞð9Þ can be related to the onset of non-zero polari-

zation and be associated with the primary order parameter.

The columns of the subduction matrices of the irreps

ð�GMÞð1Þ, ð�GMÞð6Þ and ð�GMÞð9Þ corresponding to the

identity irrep of the isotropy groups indicate the directions of

the order parameters in the irrep carrier spaces. One should

note that the specific form of the order-parameter direction

depends on the choice of the irrep matrices.

The application of the subduction and chain-subduction

conditions for the symmetry break Pm�33m>R3m, index 8,

shows that the primary distortions related to the onset of

polarization along one of the main-diagonal directions of the

cube is also associated with ð�GMÞð9Þ but with order-par-

ameter direction ða; a; aÞ. There are three more irreps of

Pm�33m whose subduction multiplicities of the identity irrep of

R3m are different from zero: ð�GMÞð1Þ, ð�GMÞð4Þ and

ð�GMÞð8Þ. Their isotropy groups Pm�33m, P�443m and R�33m are

determined from the results of CORREL for the pairs

Pm�33m>P�443m and Pm�33m>R�33m. The graph Pm�33m>R3m

derived by the program SUBGROUPGRAPH (Fig. 2) shows

that the isotropy subgroups P�443m and R�33m are intermediate
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Figure 2
Graph of maximal subgroups for the group–subgroup pair Pm�33m>R3m,
index 8.



supergroups of R3m which indicates that the corresponding

order parameters are secondary ones.

Example 2

As a second example, we consider another phase transition

that has been well studied both experimentally and theoreti-

cally, namely that of SrTiO3. In that case, the transformation is

associated with the k-vector point R ¼ ð12 ;
1
2 ;

1
2Þ which is at the

border of the Brillouin zone. The high-symmetry space group

is Pm�33m and the low-symmetry phase is tetragonal, of space-

group symmetry I4=mcm (No. 140) with a doubling of the unit

cell, i.e. I4=mcm is a general-type subgroup of Pm�33m of index

6. The analysis of the group–subgroup relations by

SUBGROUPGRAPH shows that there are four different

classes of conjugate I4=mcm subgroups. Each class consists of

three different subgroups, related to the three possible

doublings of the unit cell of the high-symmetry group. The

different classes are distinguished by the different origin

choices of the subgroup with respect to the group. For

the specific transformation we are considering, I4=mcm has

the lattice vectors ða� b; aþ b; 2cÞ with an origin shift

ð12 ;
1
2 ;

1
2Þ with respect to the Pm�33m basis. SUBGROUPGRAPH

lists the following chain of maximal subgroups:

Pm�33m>P4=mmm> I4=mcm. The correlation relations

derived by CORREL for the �R irreps show that only the

three-dimensional irrep ð�RÞð7Þ of Pm�33m subduces the iden-

tity irrep of I4=mcm, with an order-parameter direction

ða; 0; 0Þ. Obviously, this is the irrep associated with the

primary order parameter, as the only intermediate supergroup

P4=mmm of I4=mcm is a t subgroup of Pm�33m. The possible

secondary order parameters with P4=mmm as isotropy

subgroup could be associated only with Brillouin-zone center

irreps of Pm�33m. The results of CORREL for C ¼ ð0; 0; 0Þ for

the pairs Pm�33m> I4=mcm and Pm�33m>P4=mmm [tetragonal

lattice vectors ða� b; aþ b; cÞ, with no origin shift] show that

the possible secondary order parameters are associated with

ð�GMÞð1Þ (volume change) and ð�GMÞð6Þ (tetragonal distor-

tion).

6. Conclusions

The Bilbao Crystallographic Server site provides a free online

interface for different crystallographic databases and

programs at http://www.cryst.ehu.es. The web-based working

environment is divided into several shells according to

different topics, from simple retrieval tools for access to

crystallographic data to more sophisticated solid-state appli-

cations. The description of the databases and group–subgroup-

related tools was included in the first paper of a series of

publications (Aroyo et al., 2006).

Here, we report on the group-theoretical procedures and

algorithms implemented in the computer programs of the shell

with some basic group-theoretical tools necessary for the

numerous representation-theory applications. Information

about the irreducible representations of crystallographic point

groups and space groups is provided by the programs

REPRES and POINT. The combination of the representation

data with the crystallographic databases of the server

(Brillouin-zone database, group–subgroup data) permits one

to obtain the correlations between the irreps of any pair of

group–subgroup-related space groups (CORREL) which are

essential in phase-transition problems. The symmetry analysis

of selection rules for different phenomena involving interac-

tion of particles or quasiparticles in a solid is based on the

decomposition of Kronecker product representations into

irreducible constituents. The program DIRPRO calculates the

reduction for ordinary and symmetrized Kronecker products

of space-group irreps.

All the programs have a user-friendly (one-button) web

interface with documentation and online help. An important

advantage of the programs on the server is the possibility for

their internal communication. This allows the development of

programs treating applications of representation theory, using

as input data the output of the basic tools of the representa-

tion shell. The computer packages on the Bilbao Crystal-

lographic Server that facilitate the study of specific problems

of solid-state physics and structural chemistry are the subject

of a forthcoming article.
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